
Proof Principles of CSP –
CSP-Prover in Practice

Yoshinao Isobe, AIST (Japan)

Markus Roggenbach, Swansea (Wales)

Bremen, August 2007

CSP-Prover in Practice 1

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 2

CSP = Communicating Sequential Processes

• Established formalism to describe concurrent systems.

• Ongoing research on foundations;

Applications in industry, e.g.,

Train Controllers, Avionics, Security Protocols.

Hoare: Communicating Sequential Processes, 1985

Roscoe: The theory and practice of concurrency, 1998 & 2005

Schneider et al: Security Protocols: the CSP Approach, 2001

Roscoe et al: CSP, the first 25 years, 2005

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP = Communicating Sequential Processes 3

Outline

Theorem Proving for Process Algebra

CSP-Prover in Practice

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process
Algebra

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 5

A ‘logistic problem’

There are n children sitting in a circle, each with an even

number of candies.

The following step is repeated indefinitely:

• every child passes half of their candies to the child on her

left

• any child who ends up with an odd number of candies is

given another candy by the teacher

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

A ‘logistic problem’ 6

And here is what is going to happen . . .

You might think that the teacher may keep handing out

more and more candies indefinitely.

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

A ‘logistic problem’ 6

And here is what is going to happen . . .

You might think that the teacher may keep handing out

more and more candies indefinitely.

However, this is not true.

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

A ‘logistic problem’ 6

And here is what is going to happen . . .

You might think that the teacher may keep handing out

more and more candies indefinitely.

However, this is not true.

Eventually

• the teacher will stop handing out candies and

• every child will hold the same number of candies.

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 7

How to achieve such a result?

Model the system, e.g., in CSP and analyse it . . .

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 7

How to achieve such a result?

Model the system, e.g., in CSP and analyse it . . .

in the very beginning

• paper & pen only

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 7

How to achieve such a result?

Model the system, e.g., in CSP and analyse it . . .

in the very beginning

• paper & pen only

in the past

• plus Model Checking

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 7

How to achieve such a result?

Model the system, e.g., in CSP and analyse it . . .

in the very beginning

• paper & pen only

in the past

• plus Model Checking

currently

• plus Model Checking complemented by Theorem Proving

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 7

How to achieve such a result?

Model the system, e.g., in CSP and analyse it . . .

in the very beginning

• paper & pen only

in the past

• plus Model Checking

currently

• plus Model Checking complemented by Theorem Proving

in the future

• plus Model Checking & Theorem Proving integrated

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 8

Theorem Proving for Process Algebra

CSP µCRL/ACP

HOL-CSP (Tej/Wolf 1997) van de Pol (2001)

Schneider/Dutertre (2001) Badban et al (2005)

CSP-Prover (2005)

CCS π-calculus

Nesi (1992) Röckl/Hirschkoff (2003)

Bengtson/Parrow (2007)

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 9

Theorem Proving yields new qualities

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 9

Theorem Proving yields new qualities

Computer Science

• Verify language design, e.g., of CSP

• Verify proof principles, e.g., of CSP

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 9

Theorem Proving yields new qualities

Computer Science

• Verify language design, e.g., of CSP

• Verify proof principles, e.g., of CSP

Applications
• Increase the level of trust into
◦ the tool itself

(model checkers are known to produce incorrect results)

◦ the overall proof, e.g., by proving abstractions with a tool

• ‘New’ properties accessible: richer input language

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 10

Cost of Theorem Proving

negative aspect

interactive proofs require lots of time and a certain expertise

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Theorem Proving for Process Algebra 10

Cost of Theorem Proving

negative aspect

interactive proofs require lots of time and a certain expertise

positive perspective

increasingly powerful tactics automatise simple proof steps

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 12

Turn Semantics into
Syntactic Proof Principles

• semantical equation ; algebraic law
◦ how to prove them?

◦ how to apply them?

• solution of equations ; fixed point induction

• definition of deadlock ; proof by abstraction

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 13

How to do equational reasoning?

Example: One bit calculator

(((Calculator ‖ Test) [[MyRenaming]]) |[{a}]|Count3) \ {a}
=T

OK → Stop

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

How to do equational reasoning? 14

Only the 1st proof step:

Calculator ‖ Test =T Test

where

Calculator =?x : Button → ?y : Button → Display !(x + y) → Skip

Test = Button !0 → Button !1 → Display !1 → Stop

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

How to do equational reasoning? 15

Three helpful lemmas

1. (?x : {Button !0,Button !1} → P (x)) || (Button !y → Q)

=F Button !y → (P (Button !y) || Q)

2. (Display !x → P) || (Display !x → Q)

=F Display !x → (P || Q)

3. SKIP || STOP =F STOP

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 16

Remarks on Equational Reasoning

Strategy

• provide intermediate lemmas

• simplification and reduction to head normal form will do

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 16

Remarks on Equational Reasoning

Strategy

• provide intermediate lemmas

• simplification and reduction to head normal form will do

Dream: do all proofs by (conditional) equational reasoning.

Obstacle: Of the 4 main CSP models, only for one a

complete axiomatic semantics is known.

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 16

Remarks on Equational Reasoning

Strategy

• provide intermediate lemmas

• simplification and reduction to head normal form will do

Dream: do all proofs by (conditional) equational reasoning.

Obstacle: Of the 4 main CSP models, only for one a

complete axiomatic semantics is known.

Refinement v can be encoded in terms of =

; same treatment as =

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 17

Proof Principles have their preconditions

A specification:

X = (a → X) 2 X

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 17

Proof Principles have their preconditions

A specification:

X = (a → X) 2 X

Two canditates as solution over T :

Qa = (a → Qa)

Qab = (a → Qab) 2 (b → Qab)

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 17

Proof Principles have their preconditions

A specification:

X = (a → X) 2 X

Two canditates as solution over T :

Qa = (a → Qa)

Qab = (a → Qab) 2 (b → Qab)

Two potential proof principles: metric-fpi and cpo-fpi

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 18

Deadlock freedomSpecification System Specification
System Boundaries

1 - 12 © 2002 eft/pos 2000, Version 1.0.1, July 05, 2002

Figure 1 ep2 Context Diagram

PUI-PMS User

SEI-Settlement

FII-Finance Institute

CII-Card Issuer

Attendant

Merchant

POS Mgmt. System

Point of Service

Cardholder

Card

Finance
Institute

Issuer

Terminal

Card

Part of the Specification
ep2 (detailed)

Part of the Specification
ep2 (overview)

Bookkeeping

PBI-POS Bookkeeping

MBI-POS Mgmt.
Bookkeeping

ep2

ABI-Acquirer Bookkeeping

EI-ECR

AUI-Attendant

BE-BackEnd

FE-FrontEnd

CUI-Cardholder

CAI-Card

SI-Config

COI-Config

PI-Product

Acquirer

Service Center

Part of the Specification
ep2 (detailed)

Not part of the Specification
ep2

SI-Init

MI-Subm
MI-Rec

MI-Subm

Part of the Specification
ep2 (user interface)

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 19

From semantical properties to syntactical
characterization

Semantic definition

P is deadlock-free iff ∀ s ∈ Σ∗ • (s , ΣX) /∈ failures(P)

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 19

From semantical properties to syntactical
characterization

Semantic definition

P is deadlock-free iff ∀ s ∈ Σ∗ • (s , ΣX) /∈ failures(P)

Syntactic characterization DFX vF P

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 19

From semantical properties to syntactical
characterization

Semantic definition

P is deadlock-free iff ∀ s ∈ Σ∗ • (s , ΣX) /∈ failures(P)

Syntactic characterization DFX vF P

Practical use

DFX vF Abstraction vF EP2−Dialog

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 19

From semantical properties to syntactical
characterization

Semantic definition

P is deadlock-free iff ∀ s ∈ Σ∗ • (s , ΣX) /∈ failures(P)

Syntactic characterization DFX vF P

Practical use

DFX vF Abstraction vF EP2−Dialog

Link Correctnes proof of the characterization in CSP-Prover

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 20

A fundamental weakness of this approach

• (currently?) ‘small’ & ‘concrete’ problems only

• ‘Abstraction’ expands parallelism into non-determinism

; exponentiell growth in the number of parallel operators

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

CSP-Prover in Practice 20

A fundamental weakness of this approach

• (currently?) ‘small’ & ‘concrete’ problems only

• ‘Abstraction’ expands parallelism into non-determinism

; exponentiell growth in the number of parallel operators

DFP-package

• semantical – hard to use

• scales up to arbitrarily large problems

• can deal with parametrized problems

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Summary and Future Work

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Summary and Future Work 22

Summary

• CSP proof principles & their support in CSP-Prover
◦ equational reasoning

◦ fixed-point induction

◦ proof by abstraction

• Theorem Proving for CSP requires

knowledge of its proof principles

• CSP-Prover 4.0 works well

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Summary and Future Work 23

Future Work

• Extend CSP-Prover
◦ tactics and proof principles

◦ models: N ,R

• Integrate FDR and CSP-Prover (Bremen University)

• Case studies
◦ Analysing Parallel & Distributed Algorithms (University of Pretoria)

◦ Electronic Warehouse (Qinetic, UK)

◦ Logistics?

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Summary and Future Work 24

Formalisation in CSP

n: Nat
startConfig: array [0..(n-1)] of Nat %% all entries even

channel
c.Nat: Nat

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

Summary and Future Work 25

let
Pass (p:Nat,candies:Nat) =

(c.(p mod n) ! candies div 2
-> c.(p+n-1 mod n) ? x: Nat
-> Fill (p, (candies div 2) + x))

[]
(c.(p+n-1 mod n) ? x: Nat

-> c.(p mod n] ! candies div 2
-> Fill (p, (candies div 2) + x))

Fill (p:Nat,candies:Nat) = if even(c) then Pass(i,candies)
else Pass(i,candies+1)

in
||_{p=0}^(n-1) Pass(p,startConfig[i])

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007

	CSP = Communicating Sequential Processes
	Outline
	Theorem Proving for Process Algebra
	A `logistic problem'
	How to achieve such a result?
	Theorem Proving for Process Algebra
	Theorem Proving yields new qualities
	Cost of Theorem Proving

	CSP-Prover in Practice
	Turn Semantics into Syntactic Proof Principles
	How to do equational reasoning?
	Remarks on Equational Reasoning
	Proof Principles have their preconditions
	Deadlock freedom
	From semantical properties to syntactical characterization
	A fundamental weakness of this approach
	Summary
	Future Work
	Formalisation in CSP

