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CSP = Communicating Sequential Processes

• Established formalism to describe concurrent systems.

• Ongoing research on foundations;

Applications in industry, e.g.,

Train Controllers, Avionics, Security Protocols.

Hoare: Communicating Sequential Processes, 1985

Roscoe: The theory and practice of concurrency, 1998 & 2005

Schneider et al: Security Protocols: the CSP Approach, 2001

Roscoe et al: CSP, the first 25 years, 2005
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Outline

Theorem Proving for Process Algebra

CSP-Prover in Practice
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A ‘logistic problem’

There are n children sitting in a circle, each with an even

number of candies.

The following step is repeated indefinitely:

• every child passes half of their candies to the child on her

left

• any child who ends up with an odd number of candies is

given another candy by the teacher
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And here is what is going to happen . . .

You might think that the teacher may keep handing out

more and more candies indefinitely.
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You might think that the teacher may keep handing out
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A ‘logistic problem’ 6

And here is what is going to happen . . .

You might think that the teacher may keep handing out

more and more candies indefinitely.

However, this is not true.

Eventually

• the teacher will stop handing out candies and

• every child will hold the same number of candies.
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How to achieve such a result?

Model the system, e.g., in CSP and analyse it . . .
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Model the system, e.g., in CSP and analyse it . . .
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• paper & pen only
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Theorem Proving for Process Algebra 7

How to achieve such a result?

Model the system, e.g., in CSP and analyse it . . .

in the very beginning

• paper & pen only

in the past

• plus Model Checking

currently

• plus Model Checking complemented by Theorem Proving

in the future

• plus Model Checking & Theorem Proving integrated
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Theorem Proving for Process Algebra

CSP µCRL/ACP

HOL-CSP (Tej/Wolf 1997) van de Pol (2001)

Schneider/Dutertre (2001) Badban et al (2005)

CSP-Prover (2005)

CCS π-calculus

Nesi (1992) Röckl/Hirschkoff (2003)

Bengtson/Parrow (2007)
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Theorem Proving yields new qualities
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Theorem Proving yields new qualities

Computer Science

• Verify language design, e.g., of CSP

• Verify proof principles, e.g., of CSP
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Theorem Proving yields new qualities

Computer Science

• Verify language design, e.g., of CSP

• Verify proof principles, e.g., of CSP

Applications
• Increase the level of trust into
◦ the tool itself

(model checkers are known to produce incorrect results)

◦ the overall proof, e.g., by proving abstractions with a tool

• ‘New’ properties accessible: richer input language
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Cost of Theorem Proving

negative aspect

interactive proofs require lots of time and a certain expertise
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Theorem Proving for Process Algebra 10

Cost of Theorem Proving

negative aspect

interactive proofs require lots of time and a certain expertise

positive perspective

increasingly powerful tactics automatise simple proof steps
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Turn Semantics into
Syntactic Proof Principles

• semantical equation ; algebraic law
◦ how to prove them?

◦ how to apply them?

• solution of equations ; fixed point induction

• definition of deadlock ; proof by abstraction
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How to do equational reasoning?

Example: One bit calculator

(((Calculator ‖ Test ) [[MyRenaming ]]) |[ {a} ]|Count3) \ {a}
=T

OK → Stop
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How to do equational reasoning? 14

Only the 1st proof step:

Calculator ‖ Test =T Test

where

Calculator =?x : Button → ?y : Button → Display !(x + y) → Skip

Test = Button !0 → Button !1 → Display !1 → Stop
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How to do equational reasoning? 15

Three helpful lemmas

1. (?x : {Button !0,Button !1} → P (x )) || (Button !y → Q )

=F Button !y → (P (Button !y) || Q )

2. (Display !x → P ) || (Display !x → Q )

=F Display !x → (P || Q )

3. SKIP || STOP =F STOP
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Remarks on Equational Reasoning

Strategy

• provide intermediate lemmas

• simplification and reduction to head normal form will do
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Remarks on Equational Reasoning

Strategy

• provide intermediate lemmas

• simplification and reduction to head normal form will do

Dream: do all proofs by (conditional) equational reasoning.

Obstacle: Of the 4 main CSP models, only for one a

complete axiomatic semantics is known.
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Remarks on Equational Reasoning

Strategy

• provide intermediate lemmas

• simplification and reduction to head normal form will do

Dream: do all proofs by (conditional) equational reasoning.

Obstacle: Of the 4 main CSP models, only for one a

complete axiomatic semantics is known.

Refinement v can be encoded in terms of =

; same treatment as =

Y.Isobe, M.Roggenbach: CSP-Prover in Practice, Bremen, August 2007



CSP-Prover in Practice 17

Proof Principles have their preconditions

A specification:

X = (a → X ) 2 X
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Qa = (a → Qa)

Qab = (a → Qab) 2 (b → Qab)
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CSP-Prover in Practice 17

Proof Principles have their preconditions

A specification:

X = (a → X ) 2 X

Two canditates as solution over T :

Qa = (a → Qa)

Qab = (a → Qab) 2 (b → Qab)

Two potential proof principles: metric-fpi and cpo-fpi
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Deadlock freedomSpecification System Specification
System Boundaries

1 - 12 © 2002 eft/pos 2000, Version 1.0.1, July 05, 2002

Figure 1 ep2 Context Diagram
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FII-Finance Institute

CII-Card Issuer
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From semantical properties to syntactical
characterization

Semantic definition

P is deadlock-free iff ∀ s ∈ Σ∗ • (s , ΣX) /∈ failures(P )
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From semantical properties to syntactical
characterization

Semantic definition

P is deadlock-free iff ∀ s ∈ Σ∗ • (s , ΣX) /∈ failures(P )

Syntactic characterization DFX vF P

Practical use

DFX vF Abstraction vF EP2−Dialog

Link Correctnes proof of the characterization in CSP-Prover
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A fundamental weakness of this approach

• (currently?) ‘small’ & ‘concrete’ problems only

• ‘Abstraction’ expands parallelism into non-determinism

; exponentiell growth in the number of parallel operators
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A fundamental weakness of this approach

• (currently?) ‘small’ & ‘concrete’ problems only

• ‘Abstraction’ expands parallelism into non-determinism

; exponentiell growth in the number of parallel operators

DFP-package

• semantical – hard to use

• scales up to arbitrarily large problems

• can deal with parametrized problems
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Summary and Future Work 22

Summary

• CSP proof principles & their support in CSP-Prover
◦ equational reasoning

◦ fixed-point induction

◦ proof by abstraction

• Theorem Proving for CSP requires

knowledge of its proof principles

• CSP-Prover 4.0 works well
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Future Work

• Extend CSP-Prover
◦ tactics and proof principles

◦ models: N ,R

• Integrate FDR and CSP-Prover (Bremen University)

• Case studies
◦ Analysing Parallel & Distributed Algorithms (University of Pretoria)

◦ Electronic Warehouse (Qinetic, UK)

◦ Logistics?
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Formalisation in CSP

n: Nat
startConfig: array [0..(n-1)] of Nat %% all entries even

channel
c.Nat: Nat
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let
Pass (p:Nat,candies:Nat) =

( c.(p mod n) ! candies div 2
-> c.(p+n-1 mod n) ? x: Nat
-> Fill (p, (candies div 2) + x ) )

[]
( c.(p+n-1 mod n) ? x: Nat

-> c.(p mod n] ! candies div 2
-> Fill (p, (candies div 2) + x ) )

Fill (p:Nat,candies:Nat) = if even(c) then Pass(i,candies)
else Pass(i,candies+1)

in
||_{p=0}^(n-1) Pass(p,startConfig[i])
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