Integration of Routing and Resource Allocation in Dynamic Logistics Networks

International Conference on Dynamics in Logistics Bremen, August 28, 2007

Dirk C. Mattfeld & Thomas Huth

Technical University Braunschweig

- Problem Description
- Integration Strategies
- Experiment Design and Results
- Conclusion and Outlook

Problem Description

- Hub-and-spoke network
- Daily hub-to-hub transports
- By-passing other hubs is possible
- Charge carrier swap trailer (ST)
- One transportation request is one ST
- Truck trailer can transport at most two STSufficient number of ST
- Transport by 3rd party carriers paid for routes only

Technical University Braunschweig Integration of Routing and Resource Allocation in Dynamic Logistic Networks

Tasks

- Routing of loaded ST
- Allocation of empty ST

Goals

- Construction of distance minimal routes
- Matching supply and demand of empty ST

Tasks

- Routing of loaded ST
- Allocation of empty ST

Goals

- Construction of distance minimal routes
- Matching supply and demand of empty ST

Choice concerning the distribution of ST

- By explicit deadheads [Crainic et al.]
- Entrainment in the routing phase (by-product)

Crainic, T.G.; **Gendreau, M.**; **Dejax, P.**: Dynamic and stochastic models for the allocation of empty containers. In: Operations Research, 41(1):102–126, 1993.

Model Building – Vehicle Routing

- The Vehicle Routing Problem
 - Assignment decision
 - Sequence decision
 - Capacity constraints
- Special Pickup and Delivery Problem
 - Precedence constraints
 - Multi-depot
 - Multi-request per node
 - Multi-period
- Modeling: GPDP + modifications

Savelsbergh, M.W.P. ; Sol, M.: The General Pickup and Delivery Problem. In: Transportation Science, 29(1):17-29, 1995.

Technical University Braunschweig Integration of Routing and Resource Allocation in Dynamic Logistic Networks

1 depot m vehicles

n nodes, n requests

Model Building – Resource Allocation

Modeling as a Multi-Stage Transportation Problem

Space / Node

- Well known Transportation Problem
- Some extensions for the multi-stage property
 - E.g. third index for time and
 - Copy constraint for updating unused resources over time

Bookbinder, J.H. and Sethi, S.P.: The Dynamic Transportation Problem: A Survey. In: Naval Research Logistics Quarterly 27(1): 65-87, 1980.

- Problem Description
- Integration Strategies
- Experiment Design and Results
- Conclusion and Outlook

Functional Integration

Solve the Transportation Problem

Space / Node

Advantages

- Tactical knowledge
- Cost minimal total flows for deadheads
- Disadvantage
 - Transportation Problem biases the routing decision

Discussion of the Approach

Advantage

- Successive one-period model 1)
- Multi-period model 2) succeeds

Disadvantage

- One transportation request: (2,4)
- One allocation request: (1,4) or

Technical University Braunschweig Integration of Routing and Resource Allocation in Dynamic Logistic Networks

Deep Integration

Choosing OD pairs on the base level

Set-Partitioning formulation					
	Transportation requests				
Tasks T	TA1- load	TA2- load	TA1- empty	TA2- empty	(TA1-load, TA2-load, TA1-empty (TA1-load, TA2-load, TA2-empty
b1	1	0	0	0	
b2	0	1	0	0	
b3	0	0	1	1	

 \rightarrow

TA1-empty

TA2-empty

Demand

Supply

$$\sum_{i \in R \cup D} x_{li}^k = \sum_{i \in R \cup D} x_{il}^k = z_a^k * y_a \quad \longleftarrow \quad \sum_{a \in TA} e_{ab} y_a = 1$$

Selection vector y into constraint of the PDP

- a truck enters or leaves a node /
- if there exists a request a
- for this vehicle k
- and this requests is chosen by the set partitioning constraint

Technical University Braunschweig

Deep Integration

Choosing OD pairs on the base level

Set-Partitioning formulation					
	Transportation requests				
Tasks T	TA1- load	TA2- load	TA1- empty	TA2- empty	(TA1-load, TA2-load, TA1-empty) (TA1-load, TA2-load, TA2-empty)
b1	1	0	0	0	
b2	0	1	0	0	
b3	0	0	1	1	

 \rightarrow

TA1-empty

TA2-empty

Demand

Supply

$$\sum_{i \in R \cup D} x_{li}^k = \sum_{i \in R \cup D} x_{il}^k = z_a^k * y_a \quad \longleftarrow \quad \sum_{a \in TA} e_{ab} y_a = 1$$

Advantage

- Implicit selection of OD for deadheads (synergies)
- Disadvantage
 - Solution for one period only (neglects the long term problem)
 - Extensive model ist difficult to solve

Meta-heuristic solution method LNS for routing

Flow sheet -	– Functional	Integration
--------------	--------------	-------------

Solve TP using CPLEX;

while (periods p)

 $TA_p = TA_p + Get requests(p);$

s = Init solution();

 $s_{best} = LNS(s);$

Update swap trailers(s_{best});

endwhile

Ropke, S. and Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. In: *Transportation Science*, 40(4) 455-472, 2006. **Huth, T. and Mattfeld, D.:** Integration of routing and resource allocation in a dynamic logistics network. In: submitted to Transportation Research Part C: Emerging Technologies, 2007.

Technical University Braunschweig Integration of Routing and Resource Allocation in Dynamic Logistic Networks

- Problem Description
- Integration Strategies
- Experiment Design and Results
- Conclusion and Outlook

Experiment Design

- I2 VRPTW instances from Solomon (25, 50, 100 nodes)
- Extensions of these instances taken from Nanry / Barnes
- Tour duration time are used
- No service times are considered
- No time windows are considered
- Rolling planning horizon with
 - 20 periods and 25/50/100 jobs per period
 - Distribution of pickup and delivery locations
 - Uniform
 - Normal
 - Normal (smaller standard deviation)

Resources: 3 swap trailers per node initial configuration

Nanry, W.P.; **Barnes, W.**: Solving the pickup and delivery problem with time windows using reactive tabu search. In: *Transportation Research Part B*, 34:107–121, 2000.

Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. In: *Operations Research*. 35(2)254-265.1987.

Computational Results - Entrainments

Distribution	msTP	0. Sequential planning		1. Deep	integration	2. Functional integration	
		Distance	Deadhead	Distance	Deadhead	Distance	Deadhead
Uniform	2.789	478.061	20.450	480.077	9.265	461.135	0
Normal	4.778	540.698	72.831	516.565	20.935	471.562	0
Normal (ssd)	9.333	602.510	141.374	552.456	54.537	470.037	0
Sum	16.900	1.621.269	234.655	1.549.098	84.737	1.402.734	0

Distribution determines deadheads

- (0) and (1) need plenty more deadheads than the optimal flow suggested
- Allocation requests performed by deadheads
 - (0): all
 - (1): some
 - (2): none (all by detours and entrainments)
- Integration with uniform distribution does not make much sense (no allocation)
- (2) outperforms (0) by 13.5% and (1) outperforms (0) by 5%

Technical University Braunschweig

- Problem Description
- Integration Strategies
- Experiment Design and Results
- Conclusion and Outlook

Conclusion

- Real-world vehicle routing and allocation problem
 - Description
 - Model building
- Integration of different planning levels
 - Deep integration: GPDP with selection component (SP)
 - Functional integration: Transportation Problem communicates to GPDP

Results

- Integration approaches are beneficial
- Functional integration outperforms deep integration, because:
 - -Tactical knowledge (FI)
 - -Myopic solutions (DI)

Outlook – the next steps ...

- Computation of more experimentsImproved neighborhood definition
- Evaluation of hybrid approaches
 - Focus on tactical planning: Degrees of freedom (selection) for the routing problem
 - Focus on operational planning: Anticipation of future requests
- Considering stochastic dataStochastic programming

Origin – ST supply

Technical University Braunschweig Integration of Routing and Resource Allocation in Dynamic Logistic Networks

Outlook – the next steps ...

- Computation of more experimentsImproved neighborhood definition
- Evaluation of hybrid approaches
 - Focus on tactical planning:
 Degrees of freedom (selection)
 for the routing problem
 - Focus on operational planning: Anticipation of future requests
- Stochastic influences

Thank you for your attention!

Questions?

