Instituto Milenio

Sistemas Complejos de Ingeniería

Dynamic Data Mining for Improved Forecasting in Logistics and Supply Chain Management

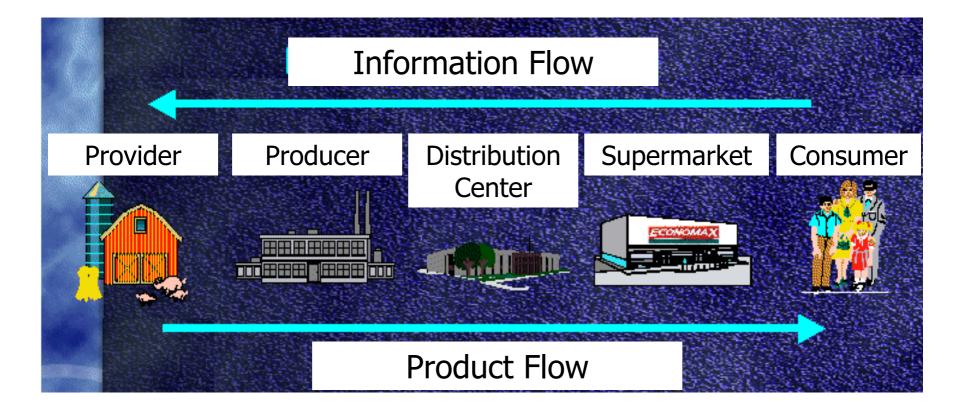
José Guajardo, Richard Weber Department of Industrial Engineering University of Chile {jguajard, rweber}@dii.uchile.cl

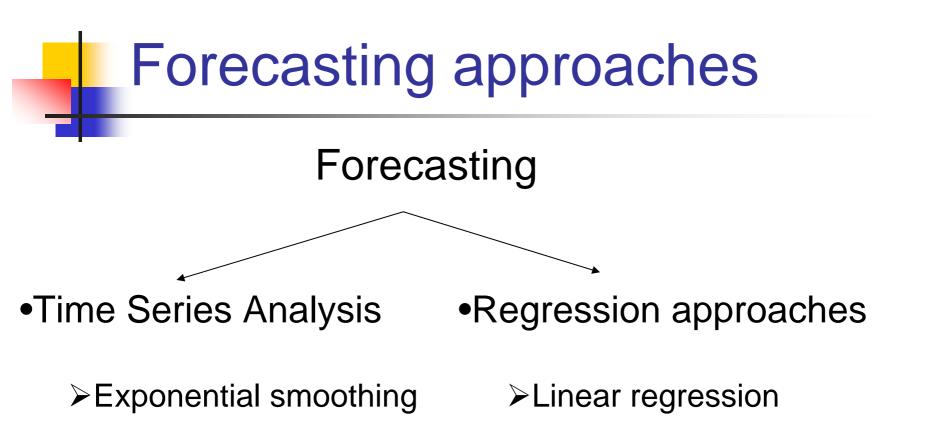
Support by Millenium Science Institute "Complex Engineering Systems" (www.sistemasdeingenieria.cl) and Fondecyt 1040926

Proposed Methodology
 Forecasting approaches
 Regression models
 Proposed methodology using SVR
 Application to real data set
 Results

Future work

Forecasting in Supply Chains





>ARIMA models

➢Neural networks

Support Vector Regression

Statistical Learning Theory (Vapnik)

CLASSIFICATION

-Fraud detection-Churn prediction-Risk assessment

-...

REGRESSION

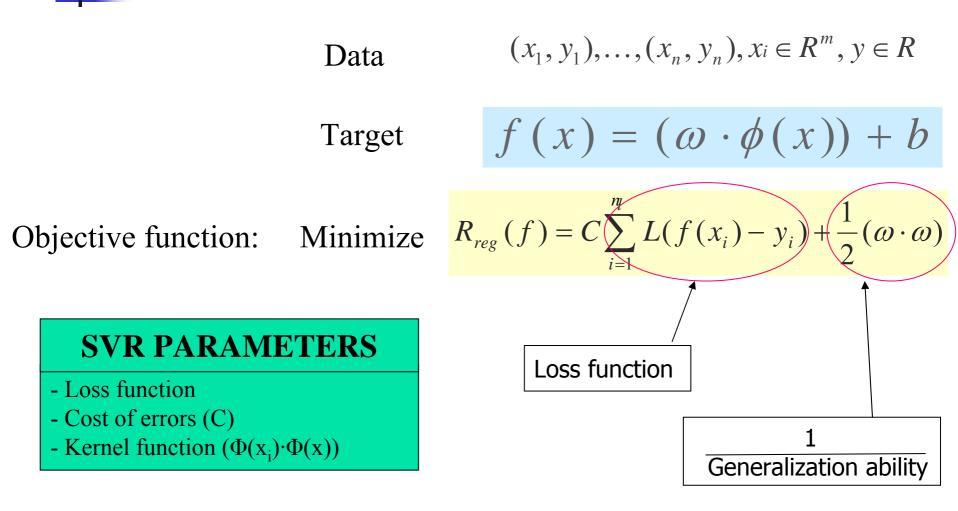
-Demand forecasting-Stock price forecasting-Regression in biotechnology

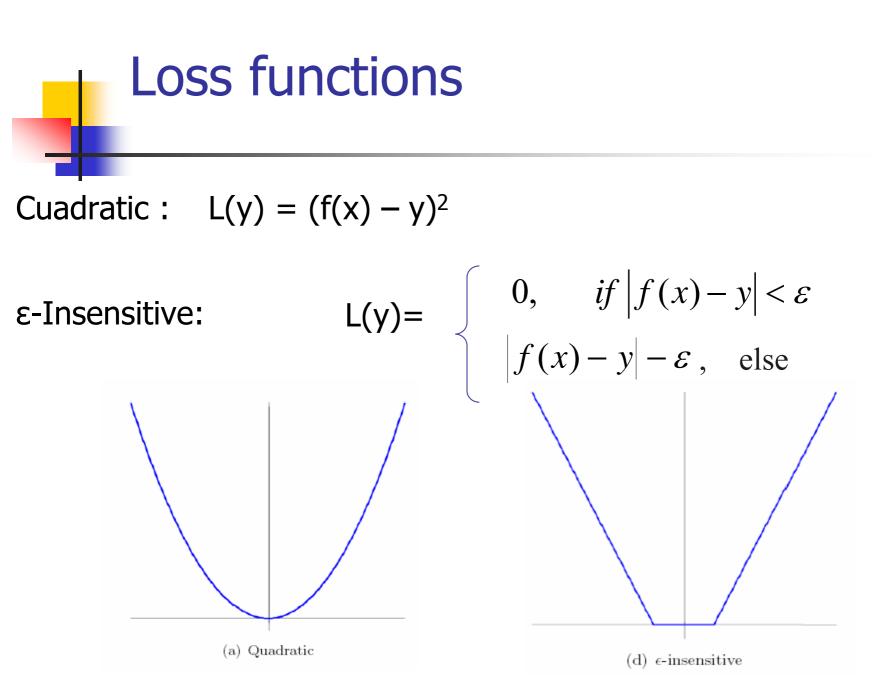
Regression model

$$Y_{t} = f(Y_{t-j}, ..., Y_{t-n}; X_{1t-i}, X_{1t-j}, ...; X_{2t-k}, X_{2t-h}...; ...)$$

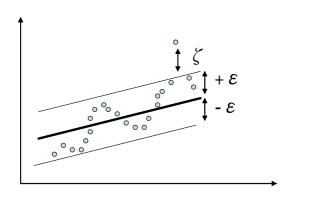
- y_t: analyzed time series
- X: External variables

SVR: General model description





Loss function *ɛ*-insensitive



Trade Off: ϵ

>larger $\varepsilon \rightarrow$ + Generalization, - exactness

smaller $\varepsilon \rightarrow$ - Generalization, + exactness

SVR Model: Cost of errors (C)

$$R_{reg}(f) = C \sum_{i=1}^{l} L(f(x_i) - y_i) + \frac{1}{2}(\omega \cdot \omega)$$

Trade Off: C

- larger C \rightarrow Generalization, + exactness
- Smaller C \rightarrow + Generalization, exactness

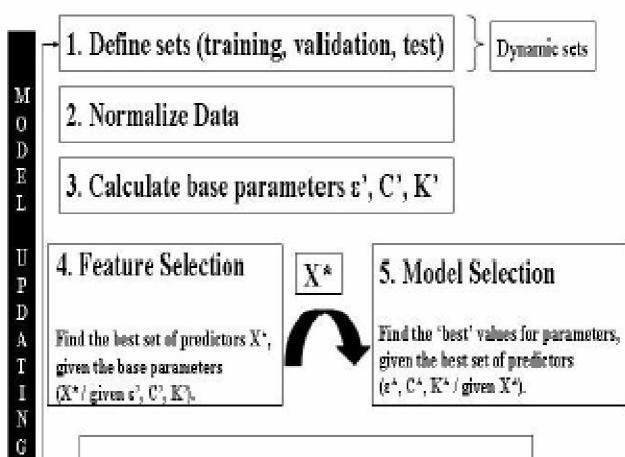
SVR Model: ε-Insensitive loss function

OPTIMIZATION PROBLEM

SOLUTION

$$\begin{array}{ll} \mathsf{Min} & \frac{1}{2} \| \omega \|^2 + C \sum_{i=1}^n \left(\xi_i + \xi_i^* \right) \\ \mathsf{s.t.} & \begin{cases} y_i - f(\mathbf{x}_i, \omega) \le \varepsilon + \xi_i^* \\ f(\mathbf{x}_i, \omega) - y_i \le \varepsilon + \xi_i \\ \xi_i, \xi_i^* \ge 0, i = 1, \dots, n \end{cases} \\ \begin{array}{l} f(\mathbf{x}_i) = \sum_{i=1}^n \left(\alpha_i - \alpha_i^* \right) K(x_i, x) + b \\ b = average_k \{ \delta_k + y_k - \sum_i (\alpha_i - \alpha_i^*) K(x_i, x_k) \} \\ \delta_k = \varepsilon^* sign(\alpha_k - \alpha_k^*) \end{cases} \end{array}$$

Proposed Methodology: Dynamic Data Mining for Forecasting



6. Final Predictive Model (2*, C*, K*, X*)

Step 1: Define Sets (Training, Validation, Test)

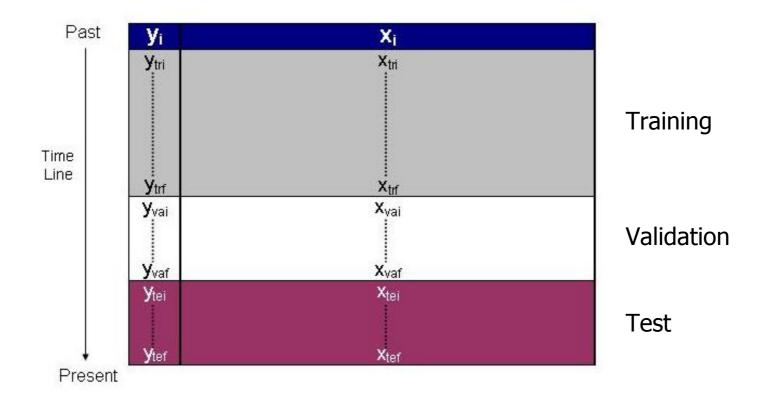
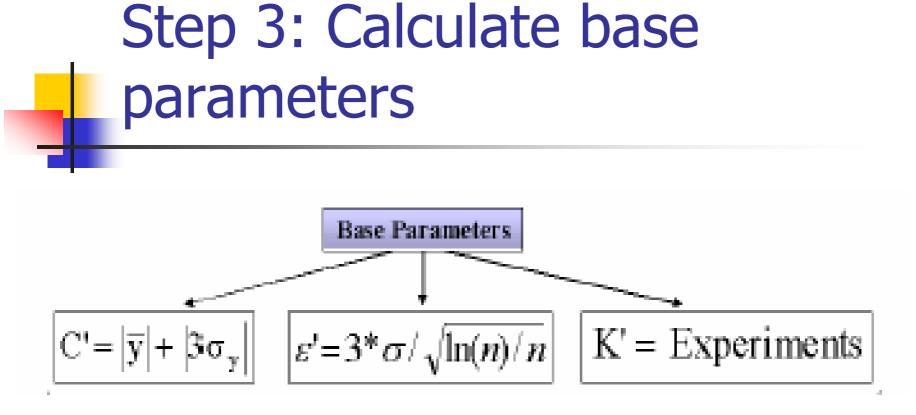


Figure 2: Static Configuration

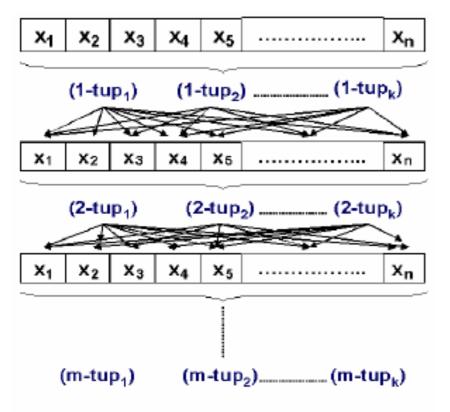


As proposed in:

V. Cherkassky and Y. Ma.: Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17(1):113-126, 2004.

Step 4: Feature Selection

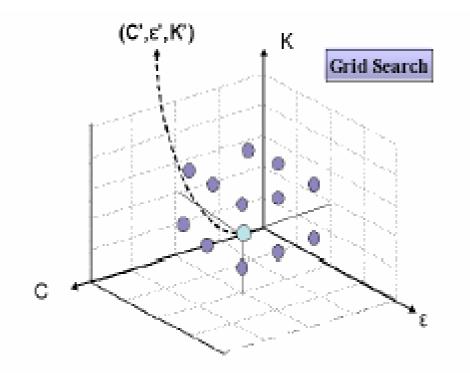
3 approaches for feature selection: Filter, wrapper, embedded methods Here: wrapper using initial model with base parameters



Kohavi, R., John, G.H. (1997): Wrappers for feature subset selection. Artificial Intelligence 97 (1-2), 273-324

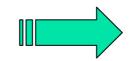
Step 5: Find best model

Grid search around base parameters using selected features



Problem description

US-company Products States

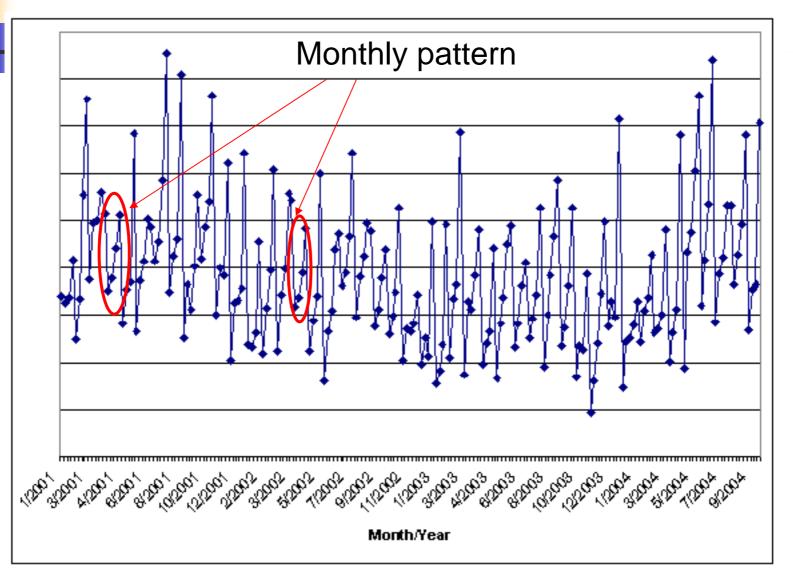


Sales Forecasting [Product, State]

Data sources

- •Web-based quotations
- Stock levels
- Reservations

Time Series: weekly sales during 2 years



Variables used (m=23)

- Sales in 14 weeks previous to prediction (y_{t-j})
- Normalized number of week within a month
- Binary variable indicating if the month under consideration has 4 or 5 weeks
- Categorical variable indicating if the week under consideration contains holidays of certain categories
- Ordinal variable indicating the year under consideration (2001, ..., 2004)

- •Number of the week under consideration
- •Number of month within a quarter
- (taking values 1,2,3)
- Number of week within a year
- (taking values 1,..., 52)
- •Number of month within a year

(taking values 1,..., 12)

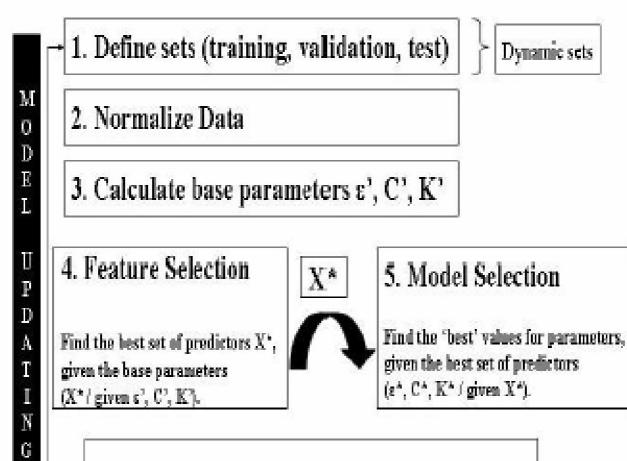
•Number of quarter within a year (taking values 1,..., 4)

Variable ranking after feature selection

- Normalized number of week within a month
- Sales one week before
- Sales two weeks before
- Binary variable indicating if the month under consideration has 4 or 5 weeks
- Sales eight weeks before
- Categorical variable indicating if the week under consideration contains holidays of certain categories
- Sales 13 weeks before
- Sales 14 weeks before
- Ordinal variable indicating the year under consideration (2001, ..., 2004)
- Sales seven weeks before

- Sales twelve weeks before
- Number of the week under consideration
- Number of month within a quarter (taking values 1,2,3)
- Sales three weeks before
- Sales six weeks before
- Sales ten weeks before
- Sales four weeks before
- Sales five weeks before
- Number of week within a year (taking values 1,..., 52)
- Number of month within a year (taking values 1,..., 12)
- Sales nine weeks before
- Number of quarter within a year (taking values 1,..., 4)
- Sales eleven weeks before

Proposed Methodology



6. Final Predictive Model (ε*, C*, K*, X*)

Model Updating (First Cycle)

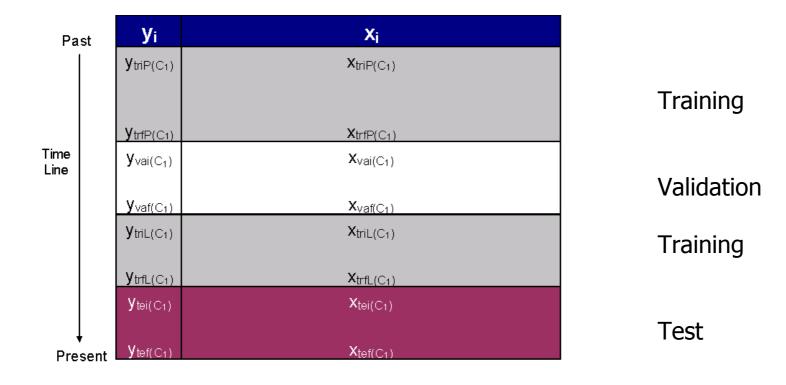


Figure 3: Predicting the first cycle (C1)

Model Updating (Second Cycle)

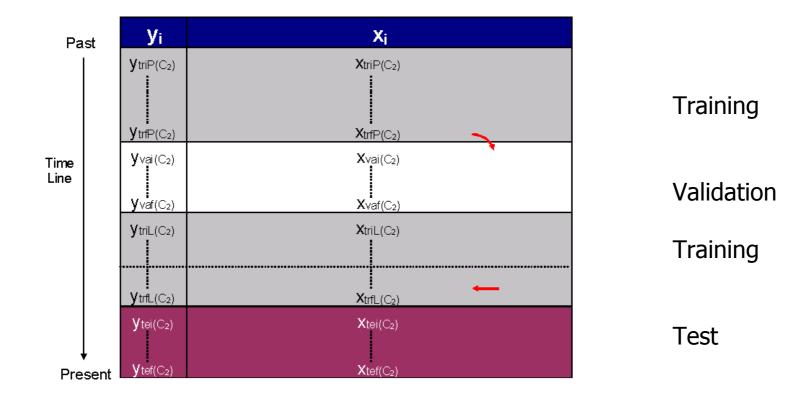


Figure 4: Predicting the second cycle (C2)

5 different combinations product/state (P1, ..., P5); Training and Validation with data from January 2001 to March 2004; Test with data from April 2004 to September 2004

Table 1: Mean absolute error (MAE) in test set (underlined: best result for each row).

	ARMAX	NN-UP	SVM-
Product			UP
P1	<u>292</u>	350	342
P2	347	368	<u>283</u>
P3	103	<u>89</u>	96
P4	<u>268</u>	288	284
P5	328	280	<u>264</u>
Average	275	275	<u>254</u>

- •Updating methodology improves forecasting results
- Proposed methodology includes dynamic feature selection thus provides interpretation of behavior.

Future work

- Further applications
- Feature selection "embedded" into SVR instead of wrapper approach
- Updating of alternative regression models
- Integration