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Supply Networks Stochastic Robust Optimal Control Numerical Example

Problem Setting

Given: Supply network

Customer Retailer

delay

delay

Distributor

delay

delay

Plant 1

Plant 2

Nodes : Facilities
Links : Flows

Information flows (orders)
Material flows (shipments)

Assumption : Material flow to be coordinated via information flow
Goal : Determine optimal control policy
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Overview

1 Supply Networks as Controlled Discrete-time Systems

2 Stochastic Robust Optimal Control

3 Numerical Example
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Discrete-time Supply Network Model

Customer Retailer

delay

delay

Distributor

delay

delay

Plant 1

Plant 2

Nodes v ∈ V : Places where material is stored

State variables x (v) for the inventories
Sink node: generate demand d (stochastic)
Source nodes: infinite supply

Edges e ∈ E : Information and material flow

Unit time delay of 1 (auxiliary state variables)
Control: Orders u(i)(x) of facilities as function of state x
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Example

d x (1)

x (3)

x (2)

Plant 1

Plant 2

x (1)
k+1 = x (1)

k + x (2)
k − dk (1)

x (2)
k+1 = x (3)

k + u(1)
k (2)

x (3)
k+1 = u(2)

k (3)
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Example

d x (1)

x (3)

x (2)

Plant 1

Plant 2

xk+1 =

1 1 0
0 0 1
0 0 0

 xk +

0 0
1 0
0 1

 uk + dk
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Finite Horizon Robust Optimal Control

Given
Dynamics xk+1 = Axk + Buk + dk

Linear constraints on state and controls Fx + Gu ≤ g
Linear costs on state (pT x) and control (qTu)

Stochastic disturbances dk ∈ D = conv{d1, d2, . . . , d `}
Fixed time horizon N

Let uk(xk) denote the control input when system is in state x at time
k time steps to go. Let π = (u1, . . . , uN).
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Fixed time horizon N

Let uk(xk) denote the control input when system is in state x at time
k time steps to go. Let π = (u1, . . . , uN). Then the worst-case cost is

Ĵ(x1, π) := max
(d1,...,dN−1)

N−1∑
i=1

[pT xi + qTui (xi )] + pT xN

where xk+1 = Axk + Buk(xk) + dk .
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Stochastic disturbances dk ∈ D = conv{d1, d2, . . . , d `}
Fixed time horizon N

Let uk(xk) denote the control input when system is in state x at time
k time steps to go. Let π = (u1, . . . , uN). The expected cost is

J̄(x1, π) := E

(
N−1∑
i=1

(pT xi + qTui (xi )) + pT xN

)
where xk+1 = Axk + Buk(xk) + Edk .
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Stochastic Dynamic Programming

Let J∗k : X −→ R the optimal value function at time k .

Terminal condition: J∗N(x) = pT
N x and XN = {x ∈ Rn : HNx ≤ hN}.

J∗k = min
uk∈Uk

{
px + qu + max

dk∈D
{J∗k+1(Ax + Bu + Ed)}

}
s.t. Fx + Gu ≤ q
and Uk = {u ∈ Rnu : Ax + Bu + Ed ∈ Xk+1∀d ∈ D}

Xk = {x ∈ X0 : ∃u ∈ Uk} with u∗k : Xk −→ Uk as optimal solution.

Remark: Problem is a parametric LP (with state x as paramter) if
J∗k+1 is piecewise linear and convex
Xk+1 is a polyhedron

(Then, J∗k and Xk are so, too.)
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Properties

Theorem

J∗k (X ) is piecewise affine and convex in x.
x∗k (X ) is piecewise affine and continuous in x.{

J∗k (x) = V (i)
k x + W (i)

k

u∗k(x) = R(i)
k x + S (i)

k

for x ∈ R(i)
k .

where R = {R(i)
k } is a partition of Xk with cl(R(i)

k ) being polyhedra.

Consequence: Solve N pLPs to recursively obtain J∗1 (x1) and u∗1(x1).

Goal: We would like to approximate u∗ = limN→∞ u∗1 .
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Example: One Retailer With Two Suppliers

xk+1 =

1 1 0
0 0 1
0 0 0

 xk +

0 0
1 0
0 1

 uk + dk , .

u1: orders at supplier 1 with lead time 1 and unit cost 4
u2: orders at supplier 2 with lead time 2 and unit cost 1
u1, u2 ≤ 8

Resulting optimal control law: (w.r.t. worst-case cost if d [t] ∈ [0, 8])

u∗1(x) = min{max{20− x1 − x2 − x3 − x4, 0}, 4},
u∗2(x) = max{16− x1 − x2 − x3 − x4, 0}.
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 xk +
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 uk + dk , .

u1: orders at supplier 1 with lead time 1 and unit cost 4
u2: orders at supplier 2 with lead time 2 and unit cost 1
u1, u2 ≤ 8

Resulting optimal control law: (w.r.t. average cost if d [t] is U{0,1,...,8})

u∗1(x) = min{max{22− x1 − x2 − x3 − x4, 0}, 4},
u∗2(x) = max{16− x1 − x2 − x3 − x4, 0}.
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Conclusions

Able to compute explicit state-feedback control policies for
general networks if

the dynamics of the nodes is linear
cost and constraints are piecewise linear and convex

Current work:
Consider approximate parametric LPs solvers (solution can lead to
exponential number of regions)
Decentralized control: coordination via ’parametric’ contracs
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