

# Determining Optimal Control Policies for Supply Networks Under Uncertainty

Marco Laumanns Institute for Operations Research, ETH Zurich

laumanns@ifor.math.ethz.ch

Intern. Conference on Dynamics in Logistics, Bremen, 28 August 2007





## **Problem Setting**

#### Given: Supply network



A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

→ < ∃ →</p>



## **Problem Setting**

#### Given: Supply network



#### **Nodes** : Facilities

Links : Flows

- Information flows (orders)
- Material flows (shipments)



## **Problem Setting**

#### Given: Supply network



#### **Nodes** : Facilities

Links : Flows

- Information flows (orders)
- Material flows (shipments)

Assumption : Material flow to be coordinated via information flow Goal : Determine optimal control policy



#### **Overview**



#### **2** Stochastic Robust Optimal Control





#### **Overview**

#### **1** Supply Networks as Controlled Discrete-time Systems

#### 2 Stochastic Robust Optimal Control

#### **3** Numerical Example





**Nodes**  $v \in V$ : Places where material is stored

#### Edges $e \in E$ : Information and material flow





Nodes v ∈ V: Places where material is stored
 State variables x<sup>(v)</sup> for the inventories

#### Edges $e \in E$ : Information and material flow





**Nodes**  $v \in V$ : Places where material is stored

- State variables  $x^{(v)}$  for the inventories
- Sink node: generate demand *d* (stochastic)
- Source nodes: infinite supply

Edges  $e \in E$ : Information and material flow





**Nodes**  $v \in V$ : Places where material is stored

- State variables  $x^{(v)}$  for the inventories
- Sink node: generate demand d (stochastic)
- Source nodes: infinite supply

**Edges**  $e \in E$ : Information and material flow

Unit time delay of 1 (auxiliary state variables)





**Nodes**  $v \in V$ : Places where material is stored

- State variables  $x^{(v)}$  for the inventories
- Sink node: generate demand d (stochastic)
- Source nodes: infinite supply

Edges  $e \in E$ : Information and material flow

Unit time delay of 1 (auxiliary state variables)

**Control:** Orders  $u^{(i)}(x)$  of facilities as function of state x



### Example



$$x_{k+1}^{(1)} = x_k^{(1)} + x_k^{(2)} - d_k$$
(1)

$$x_{k+1}^{(2)} = x_k^{(3)} + \frac{u_k^{(1)}}{u_k}$$
(2)

$$x_{k+1}^{(3)} = u_k^{(2)} \tag{3}$$

< □ > < 同 > < 回 > < 回 > < 回 >

æ



#### Example



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <



#### **Overview**

Supply Networks as Controlled Discrete-time Systems

#### **2** Stochastic Robust Optimal Control

#### 3 Numerical Example



## Finite Horizon Robust Optimal Control

#### Given

• Dynamics 
$$x_{k+1} = Ax_k + Bu_k + d_k$$

- Linear constraints on state and controls  $Fx + Gu \le g$
- Linear costs on state  $(p^T x)$  and control  $(q^T u)$
- Stochastic disturbances  $d_k \in \mathcal{D} = \operatorname{conv} \{ d^1, d^2, \dots, d^\ell \}$
- Fixed time horizon N

Let  $u_k(x_k)$  denote the control input when system is in state x at time k time steps to go. Let  $\pi = (u_1, \ldots, u_N)$ .



## Finite Horizon Robust Optimal Control

#### Given

Dynamics 
$$x_{k+1} = Ax_k + Bu_k + d_k$$

- Linear constraints on state and controls  $Fx + Gu \le g$
- Linear costs on state  $(p^T x)$  and control  $(q^T u)$
- Stochastic disturbances  $d_k \in \mathcal{D} = \operatorname{conv} \{ d^1, d^2, \dots, d^\ell \}$
- Fixed time horizon N

Let  $u_k(x_k)$  denote the control input when system is in state x at time k time steps to go. Let  $\pi = (u_1, \ldots, u_N)$ . Then the worst-case cost is

$$\hat{J}(x_1,\pi) := \max_{(d_1,\dots,d_{N-1})} \sum_{i=1}^{N-1} [p^T x_i + q^T u_i(x_i)] + p^T x_N$$

where  $x_{k+1} = Ax_k + Bu_k(x_k) + d_k$ .



## Finite Horizon Robust Optimal Control

#### Given

Dynamics 
$$x_{k+1} = Ax_k + Bu_k + d_k$$

- Linear constraints on state and controls  $Fx + Gu \le g$
- Linear costs on state  $(p^T x)$  and control  $(q^T u)$
- Stochastic disturbances  $d_k \in \mathcal{D} = \operatorname{conv} \{ d^1, d^2, \dots, d^\ell \}$
- Fixed time horizon N

Let  $u_k(x_k)$  denote the control input when system is in state x at time k time steps to go. Let  $\pi = (u_1, \ldots, u_N)$ . The expected cost is

$$\overline{J}(x_1,\pi) := \mathbb{E}\left(\sum_{i=1}^{N-1} (p^T x_i + q^T u_i(x_i)) + p^T x_N\right)$$

where  $x_{k+1} = Ax_k + Bu_k(x_k) + Ed_k$ .



Let  $J_k^* : \mathcal{X} \longrightarrow \mathbb{R}$  the optimal value function at time k. Terminal condition:  $J_N^*(x) = p_N^T x$  and  $\mathcal{X}_N = \{x \in \mathbb{R}^n : H_N x \le h_N\}$ .



Let  $J_k^* : \mathcal{X} \longrightarrow \mathbb{R}$  the optimal value function at time k. Terminal condition:  $J_N^*(x) = p_N^T x$  and  $\mathcal{X}_N = \{x \in \mathbb{R}^n : H_N x \le h_N\}$ .  $J_k^* = \min_{u_k \in \mathcal{U}_k} \left\{ px + qu + \max_{d_k \in \mathcal{D}} \{J_{k+1}^*(Ax + Bu + Ed)\} \right\}$ 

and 
$$\mathcal{U}_k = \{ u \in \mathbb{R}^{n_u} : Ax + Bu + Ed \in \mathcal{X}_{k+1} \forall d \in \mathcal{D} \}$$



Let  $J_k^* : \mathcal{X} \longrightarrow \mathbb{R}$  the optimal value function at time k. Terminal condition:  $J_N^*(x) = p_N^T x$  and  $\mathcal{X}_N = \{x \in \mathbb{R}^n : H_N x \le h_N\}$ .  $J_k^* = \min_{u_k \in \mathcal{U}_k} \left\{ px + qu + \max_{d_k \in \mathcal{D}} \{J_{k+1}^*(Ax + Bu + Ed)\} \right\}$ s.t.  $Fx + Gu \le q$ and  $\mathcal{U}_k = \{u \in \mathbb{R}^{n_u} : Ax + Bu + Ed \in \mathcal{X}_{k+1} \forall d \in \mathcal{D}\}$ 

 $\mathcal{X}_k = \{x \in \mathcal{X}_0 : \exists u \in \mathcal{U}_k\}$ 



Let  $J_k^* : \mathcal{X} \longrightarrow \mathbb{R}$  the optimal value function at time k. Terminal condition:  $J_N^*(x) = p_N^T x$  and  $\mathcal{X}_N = \{x \in \mathbb{R}^n : H_N x \le h_N\}$ .  $J_k^* = \min_{u_k \in \mathcal{U}_k} \left\{ px + qu + \max_{d_k \in \mathcal{D}} \{J_{k+1}^*(Ax + Bu + Ed)\} \right\}$ s.t.  $Fx + Gu \le q$ and  $\mathcal{U}_k = \{u \in \mathbb{R}^{n_u} : Ax + Bu + Ed \in \mathcal{X}_{k+1} \forall d \in \mathcal{D}\}$  $\mathcal{X}_k = \{x \in \mathcal{X}_0 : \exists u \in \mathcal{U}_k\}$  with  $u_k^* : \mathcal{X}_k \longrightarrow \mathcal{U}_k$  as optimal solution.



Let  $J_k^* : \mathcal{X} \longrightarrow \mathbb{R}$  the optimal value function at time k. Terminal condition:  $J_N^*(x) = p_N^T x$  and  $\mathcal{X}_N = \{x \in \mathbb{R}^n : H_N x \le h_N\}$ .  $J_k^* = \min_{u_k \in \mathcal{U}_k} \left\{ px + qu + \max_{d_k \in \mathcal{D}} \{J_{k+1}^*(Ax + Bu + Ed)\} \right\}$ s.t.  $Fx + Gu \le q$ and  $\mathcal{U}_k = \{u \in \mathbb{R}^{n_u} : Ax + Bu + Ed \in \mathcal{X}_{k+1} \forall d \in \mathcal{D}\}$ 

 $\mathcal{X}_k = \{x \in \mathcal{X}_0 : \exists u \in \mathcal{U}_k\}$  with  $u_k^* : \mathcal{X}_k \longrightarrow \mathcal{U}_k$  as optimal solution. **Remark:** Problem is a parametric LP (with state x as paramter) if  $J_{k+1}^*$  is piecewise linear and convex

 $\mathcal{X}_{k+1}$  is a polyhedron

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



Let  $J_k^* : \mathcal{X} \longrightarrow \mathbb{R}$  the optimal value function at time k. Terminal condition:  $J_N^*(x) = p_N^T x$  and  $\mathcal{X}_N = \{x \in \mathbb{R}^n : H_N x \le h_N\}$ .  $J_k^* = \min_{u_k \in \mathcal{U}_k} \left\{ px + qu + \max_{d_k \in \mathcal{D}} \{J_{k+1}^*(Ax + Bu + Ed)\} \right\}$ s.t.  $Fx + Gu \le q$ and  $\mathcal{U}_k = \{u \in \mathbb{R}^{n_u} : Ax + Bu + Ed \in \mathcal{X}_{k+1} \forall d \in \mathcal{D}\}$ 

 $\mathcal{X}_k = \{x \in \mathcal{X}_0 : \exists u \in \mathcal{U}_k\}$  with  $u_k^* : \mathcal{X}_k \longrightarrow \mathcal{U}_k$  as optimal solution.

**Remark:** Problem is a parametric LP (with state x as paramter) if

- $J_{k+1}^*$  is piecewise linear and convex
- $\mathcal{X}_{k+1}$  is a polyhedron

(Then,  $J_k^*$  and  $\mathcal{X}_k$  are so, too.)



### **Properties**

#### Theorem

- $J_k^*(X)$  is piecewise affine and convex in x.
- $x_k^*(X)$  is piecewise affine and continuous in x.

$$\begin{cases} J_k^*(x) = V_k^{(i)} x + W_k^{(i)} \ u_k^*(x) = \mathcal{R}_k^{(i)} x + \mathcal{S}_k^{(i)} \end{cases} & ext{ for } x \in \mathcal{R}_k^{(i)}. \end{cases}$$

where  $\mathcal{R} = \{\mathcal{R}_k^{(i)}\}\$  is a partition of  $\mathcal{X}_k$  with  $cl(\mathcal{R}_k^{(i)})$  being polyhedra.



### **Properties**

#### Theorem

- $J_k^*(X)$  is piecewise affine and convex in x.
- $x_k^*(X)$  is piecewise affine and continuous in x.

$$\begin{cases} J_k^*(x) = V_k^{(i)} x + W_k^{(i)} \ u_k^*(x) = \mathcal{R}_k^{(i)} x + \mathcal{S}_k^{(i)} \end{cases} & ext{ for } x \in \mathcal{R}_k^{(i)}. \end{cases}$$

where  $\mathcal{R} = \{\mathcal{R}_k^{(i)}\}\$  is a partition of  $\mathcal{X}_k$  with  $cl(\mathcal{R}_k^{(i)})$  being polyhedra. Consequence: Solve N pLPs to recursively obtain  $J_1^*(x_1)$  and  $u_1^*(x_1)$ .



## **Properties**

#### Theorem

- $J_k^*(X)$  is piecewise affine and convex in x.
- $x_k^*(X)$  is piecewise affine and continuous in x.

$$\begin{cases} J_k^*(x) = V_k^{(i)} x + W_k^{(i)} \ u_k^*(x) = \mathcal{R}_k^{(i)} x + \mathcal{S}_k^{(i)} \end{cases} & ext{ for } x \in \mathcal{R}_k^{(i)}. \end{cases}$$

where  $\mathcal{R} = \{\mathcal{R}_k^{(i)}\}$  is a partition of  $\mathcal{X}_k$  with  $cl(\mathcal{R}_k^{(i)})$  being polyhedra. Consequence: Solve N pLPs to recursively obtain  $J_1^*(x_1)$  and  $u_1^*(x_1)$ . Goal: We would like to approximate  $u^* = \lim_{N \to \infty} u_1^*$ .



#### **Overview**

Supply Networks as Controlled Discrete-time Systems

#### 2 Stochastic Robust Optimal Control





### **Example: One Retailer With Two Suppliers**

$$x_{k+1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x_k + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u_k + d_k,.$$

 $u_1$ : orders at supplier 1 with lead time 1 and unit cost 4  $u_2$ : orders at supplier 2 with lead time 2 and unit cost 1  $u_1, u_2 \le 8$ 

**Resulting optimal control law:** (w.r.t. worst-case cost if  $d[t] \in [0, 8]$ )

$$u_1^*(x) = \min\{\max\{20 - x_1 - x_2 - x_3 - x_4, 0\}, 4\}, u_2^*(x) = \max\{16 - x_1 - x_2 - x_3 - x_4, 0\}.$$



### **Example: One Retailer With Two Suppliers**

$$x_{k+1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x_k + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u_k + d_k,.$$

 $u_1$ : orders at supplier 1 with lead time 1 and unit cost 4  $u_2$ : orders at supplier 2 with lead time 2 and unit cost 1  $u_1, u_2 \le 8$ 

**Resulting optimal control law:** (w.r.t. average cost if d[t] is  $\mathcal{U}_{\{0,1,\ldots,8\}}$ )

$$u_1^*(x) = \min\{\max\{22 - x_1 - x_2 - x_3 - x_4, 0\}, 4\}, u_2^*(x) = \max\{16 - x_1 - x_2 - x_3 - x_4, 0\}.$$



### Conclusions

- Able to compute explicit state-feedback control policies for general networks if
  - the dynamics of the nodes is linear
  - cost and constraints are piecewise linear and convex
- Current work:
  - Consider approximate parametric LPs solvers (solution can lead to exponential number of regions)
  - Decentralized control: coordination via 'parametric' contracs