

Clustering in Autonomous Cooperating Logistic Processes

International Conference on Dynamics in Logistics Bremen, August 28th - 30th, 2007

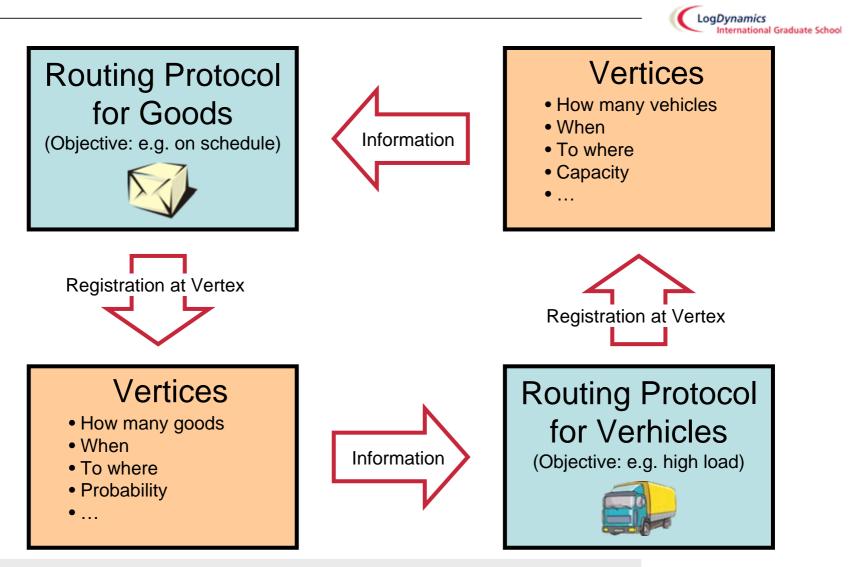
Gulshanara Singh, Bernd-Ludwig Wenning, Amanpreet Singh, <u>Markus Becker</u>, Carmelita Görg

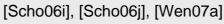
Working Group Communication Networks, TZI ikom, University of Bremen

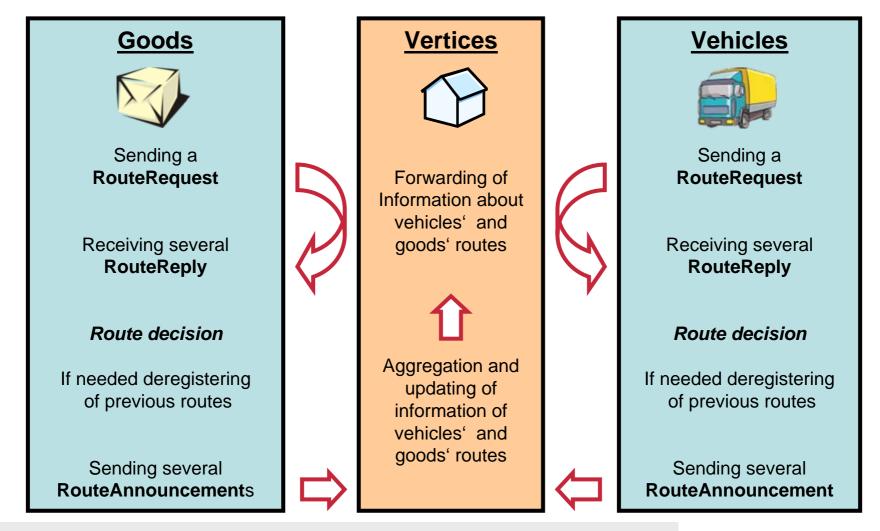
Overview

- Motivation
- Routing
 - Distributed Logistics Routing Protocol
- Clustering
- Analytical Results
- Conclusions & Outlook

Motivation


Autonomous Cooperation

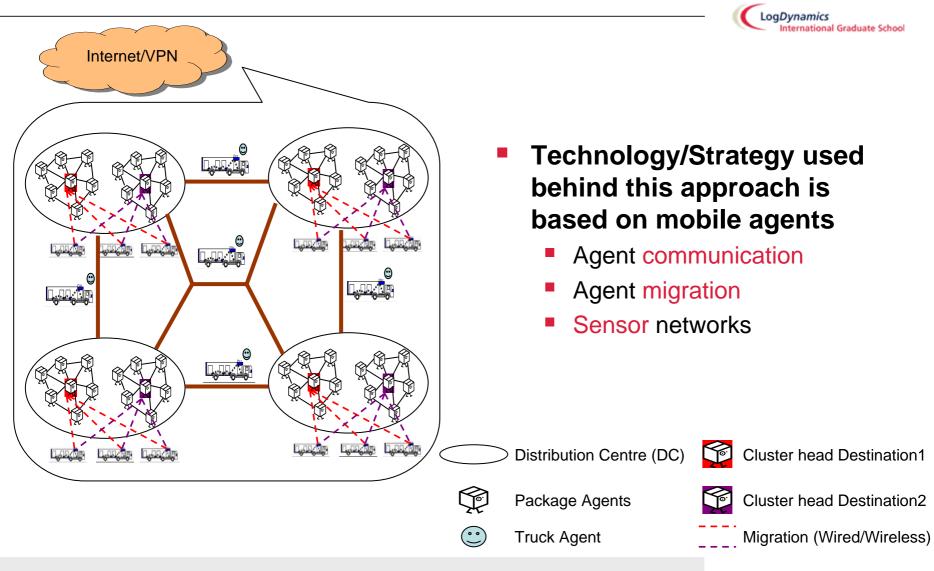

- Approach to cope with rising complexity and dynamics in logistic networks
- To deal with complexity: paradigm shift from "non-intelligent" items to decentralized "intelligent" items
- Every item might possess the capability of interacting with other items
- Emphasizes the need of rational, reactive and autonomous entities
- Demands a strong need of various technologies RFID, GPS systems, software agents along with communication networks
- Software agent paradigm has much to offer in terms of dynamics involved in logistics
- Agent-based systems reflect the distributed systems to deal with dynamics of planning and execution in real-time settings
- Integration of agent-technology and knowledge-management approaches in logistic processes


Parallel Routing

DLRP - Distributed Logistics Routing Protocol

LogDynamics International Graduate School

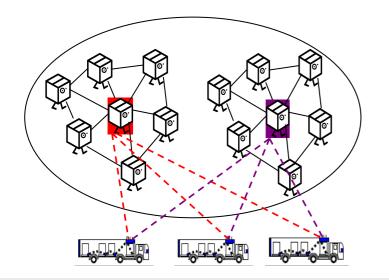
[Scho06i], [Scho06j], [Wen07a]


Clustering

LogDynamics International Graduate School

- Definition
 - A Cluster is a collection of objects which are "similar" between them but are dissimilar to the object belonging to different groups
 - Clustering can be of objects which share the same concept or same data
- The concept of clustering has been proved to be very effective in managing the resources and maintaining a good scalability, e.g. Ad-hoc networks, Sensor networks
- A good clustering imposes a regular, high-level structure on the network
- Why clustering in Logistics:
 - Every entity in logistic network can be represented as software agents which can be static or mobile (dynamic)
 - To group agents with similar objectives or data (e.g. grouping package agents with same destination)
 - A method of clustering agents within a fully decentralized logistic system (Multiagent system) can be used for better scalability

Clustering


Package Autonomy

Package

(Origin, Destination, Location, Type, Priority, Due date, Price, etc.)

Cluster of Packages

(Location = e.g. Bremen, Destination = e.g. Hamburg, etc...)

- Clustering of Packages
 - Cluster-head agent selection from package clusters
- Truck negotiation
 - Cluster-head agent get info from all the trucks
- Package negotiation for trucks
 - Availability/capacity
 - Destination (more specific)
 - Lifetime
 - Handling different types of items (food items/breakable items)
- Transportation Problem
 - Usage of web services for greater dynamism
 - Change of route (accident/spontaneous mishaps)
 - Change of order
 - Negotiation between trucks over the route

Messages for Clustering

Associated Package CH Agent -1 CH Agent - 2 Vertex RegReq RegAck **CHAnn** CHAnn CHInfo, CRegReq Ccomplete CRegAck Ccomplete

LogDynamics

International Graduate School

Messages for Routing

Vertex I-1 Package Vertex Associated Vertex Query Response Query Response RREQ RR<u>E</u>Q RREQ RREQ RREQ RREP RANN RANN RANN

LogDynamics

International Graduate School

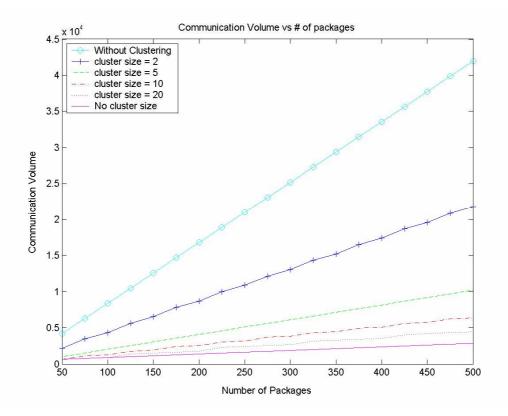
Notation

LogDynamics International Graduate School

- Number of packages stored in a DC = N_packs
- Number of destinations = N_dests
- Number of Clusters = N_Clusters
- Cluster size = Cl_size
- Total number of Register Request (RegReq) = N_packs
- Total number of Register Acknowledge (RegAck) = N_packs
- Cluster-head Announcement / Information:
 - Total number of Cluster-head Information (CH_Info) or Cluster-head Announcements (CH_Ann) = N_packs
 - Total number of Cluster-head Announcements (CH_Ann) = N_dests
 - Total number of Cluster-head Information (CH_Info) = N_packs N_dests
- Clustering Process:
 - Total number of Cluster Register Request (CRegReq) = N_packs N_dests
 - Total number of Cluster Register Acknowledge (CRegAck) = N_packs N_dests
 - Total Clustering Volume = (5 * N_packs 2 * N_clusters)
 - where N_clusters = N_dests * roundup (N_packs / (N_dests * Cl_size))

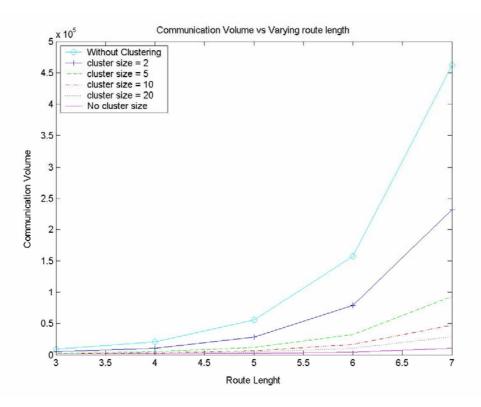
Analysis of Communication

Assuming an average branching factor *b* and an average route length of *l* hops, the amount of route replies is b^{l-1} , while the total number of route requests sent in the network is $\sum_{i=0}^{l-1} b^i$.

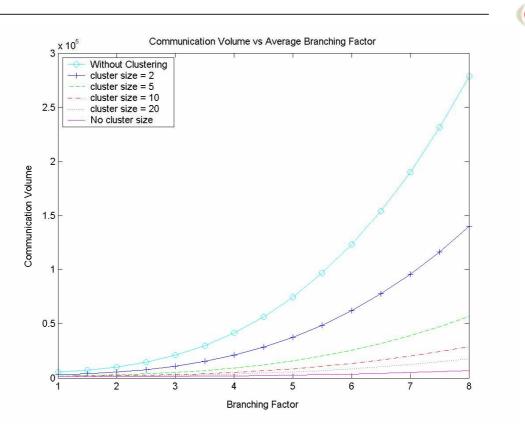


Parameters	Representation	Value
Number of Packages	N_packs	Min 50 Max 500
Number of Destinations	N_dests	5
Route Length		Min 3 Max 7
Branching Factor		Min 1 Max 8
Number of alternate routes		3
Cluster size	Cl_size	Min 2 Max 20

Analytical Results I


LogDynamics International Graduate School

Linear increase of the communication volume with regard to the number of packages


Analytical Results II

LogDynamics International Graduate School

Quadratic increase of the communication volume with regard to the route length

Analytical Results III

Quadratic increase of the communication volume with regard to the branching factor

LogDynamics

International Graduate School

Conclusions & Outlook

- Clustering of the entities reduces the communication volume
- Larger cluster sizes lead to less communication between the logistical entities
- Communication needed for cluster formation is only local
- Outlook
 - Implementation of the clusterized DLRP in the multi-agent based simulation system 'Plasma'
 - Investigation by means of simulation

