

Autonomously Controlled Adaptation of Formal Decision Models

Comparison of Generic Approaches

- VRPTW with Uncertain Demand
- Planning System Layout
- Generic Optimization Model Adaptation Rules
- Computational Experiments & Numerical Results

<u>Jörn Schönberger</u> & Herbert Kopfer Chair of Logistics – CRC 637 "Autonomous Logistics" {jsb,kopfer}@uni-bremen.de

Vehicle Routing Problem with Time Windows

Three extensions

- soft time windows (penalties!)
- two fulfilment modes
 - self-fulfilment: cheap but sometimes delayed
 - subcontracting: expensive but always in time
- (re-)planning with incomplete data

Goals

- least cost transportation plan
- least punctuality rate p_t: 80%

number of incoming requests

Classification and Related Work SFB 637 Autonomous Logistics **Decision Problem** all data known data incomplete single (a-priori) sequential solution solution time-dependent static dynamic problem problem problem dynamic online static model model model dynamic static adaptive manual definition rules rules rules

Online Optimization Model

Sequence of "complete" decision problems

(sequence of instances)

Requirements expressed in an instance

- (1) $f^{\text{self}}(C^{\text{self}}+C^{\text{pen}})+f^{\text{sub}}C^{\text{sub}} \rightarrow \min$.
- (2) one (empty) route for each vehicle
- (3) each request is served
- (4) subcontracted requests remain subcontracted
- (5) started requests cannot re-assigned

Punctuality Requirement: Static Modelling Rules

HARD

- constraint p_i≥0.8 for each replanning step
- constraint is strictly considered

PEN

- delays depreciate objective function value
- penalty increases proportionally with delay
- different fulfilment mode costs bias mode selection ($C_{sub}/C_{self} \approx 3$)

PEN and HARD: state-of-the-art

SFB 637

utonomous Logistics

Adaptive Model Definition Rules

Deficiencies of static rules

- hard coding (constraints) ⇒ infeasibilities
- static penalty (objective function) ⇒ bad performance but prevention of infeasibilities

Reflection of problem severeness variation

- detecting current process performance
- automatic problem image modification
- re-definition of search direction and constraint set

SFB 637

tonomous Logistics

Incorporating Adaptive Model Definition Rules

Fetch current system performance

Analyse system performance

Constraint Set ADaptation (CSAD)

- adjust set of available solution proposals
- add or drop constraints
- sharp or relax existing constraints

Search Direction ADaptation (SDAD)

- adjust the evaluation of solution proposals
- manipulate the objective function
- re-weight the components (redefine coefficients)

Constraint Set ADaptation

Restrict mode selection of new requests

Calculation of current punctuality rate p_t

G(p_t) percent of subsequently arriving requests will be subcontracted

Control function G(p_t)

- $p_t \le 0.7 \Rightarrow G(p_t)=100\%$ (full intervention)
- $p_t \ge 0.9 \Rightarrow G(p_t)=0\%$ (no intervention)
- 0,7 < p_t < 0,9 \Rightarrow G(p_t) decreases from 1 to 0

No subsequent revision possible

 $G(p_t)$ re-calculated before every update

Search Direction ADaptation

Re-weighting of costs of the two fulfilment modes

 $Z = h(t,p_t) \cdot (C^{self} + C^{pen}) + 1 \cdot C^{sub} \rightarrow min$

- h(0,p₀) = 1
- $h(t,p_t) = 1 + (C^{sub}/(C^{self}+C^{pen})) \cdot G(p_t), t>0$

h(t,p_t) re-calculated prior to solver call

Results – Good News

Subcontracting costs of a request: 3-times higher than self-entry costs

SFB 637

Autonomous Logistics

Results - Drawbacks

SFB 637

Conclusions and Future Research

Findings

- adaptive model definition is reasonable
- deviation from strict cost-based decisions: additional costs!
- if constraints are "dangerous": suitable alternative
- sufficient performance

Open Questions

- impacts of penalty values
- combination of static and adaptive rules
- managerial impacts

ious Logistics