Application of Markov Drift Processes to Logistical Systems Modeling

Prof. Dr. Mykhaylo Postan Department of Economics and Management Odessa National Maritime University Ukraine

# **Contents of Presentation**

- Definition of Markov Drift Process and Its Properties
- Production Line with Unreliable Units
- Interaction of Two Transport Units Via Warehouse
- Optimal Distribution of Cargo-Flows Among a Set of Transshipment Points
- Conclusion
- References

Scientists who contributed to problem early:

Sevastyanov (1962), Kosten (1974,1986), Wijngaard (1979), Anick, Mitra, and Sondhi (1982), Mitra (1988), Mitra and Mitrani (1991), Prabhu (1980, 1998), Postan (1989,1992,1998, 2006)

### **Geographical position of Ukraine**





### **Odessa National Maritime University**



- ONMU was founded in1930
- 8 Faculties and 5500 students
- Bachelors in Engineering, M.Sc. and PhD studies



#### **Definition of Markov Drift Process**

 $(Z(t), \xi(t))$ 

Z(t) is discrete component;

 $\xi(t)$  is *n*-dimensional random walk.

The phase space  $\Omega = D \times C$ , where **D** is a discrete set; **C** is a continuous set, **C** 

 $\subseteq R^n_+, R^n_+$ 

is non-negative orthant of *n*-dimensional Eucledian space.

The basic differential equation

$$\xi'(t) = v_{Z(t)}(\xi(t))$$
 a.s., (1)

where

 $v_{ki}(x), k=1,2,...,n; i \in D, x \in C$ 

are the given bounded functions describing the "drift" of  $\xi(t)$ .

Specification of equation (1):  
a)  

$$C=[0,E_1] \times [0,E_2] \times ... \times [0,E_n];$$
  
b)  
 $\xi'_k(t) = \sum_{i \in D} v_{ki} I(Z(t)=i) - \sum_{i \in D_k^-} v_{ki} I(Z(t)=i,\xi_k(t)=0) - \sum_{i \in D_k^+} v_{ki} I(Z(t)=i,\xi_k(t)=E_k), k=1,2,...,n,$  a.s., (2)

where I(A) is the indicator of an event A;

$$D_{k}^{-} = \{i : v_{ki} < 0, i \in D\} \neq \emptyset, D_{k}^{+} = \{i : v_{ki} > 0, i \in D\} \neq \emptyset,$$
  
$$\sup_{i} |v_{ki}| < l_{k} < \infty, k = 1, 2, ..., n.$$

$$\begin{aligned} & \text{The basic system of differential equations} \\ & \text{and boundary conditions for the case } n=1 \\ & \frac{\partial}{\partial t} + v_i \frac{\partial}{\partial x} ) q_i(x,t) = -\lambda_i(x) q_i(x,t) + \\ & + \sum_{j \neq i} \lambda_{ji}(x) q_i(x,t), \quad 0 < x < E, \quad i \in D, \quad (1) \\ & v_i q_i(0,t) = \sum_{j \in D^- \bigcup D^0} \lambda_{ji}(-0) p_j^-(t), i \in D^+, \quad (2) \\ & \frac{d}{dt} p_i^- + v_i q_i(0,t) = -\lambda_i(-0) p_j^-(t) + \sum_{j \in D^- \bigcup D^0; j \neq i} \lambda_{ji}(-0) p_j^-(t), \\ & i \in D^- \bigcup D^0, \\ & -v_i q_i(E,t) = \sum_{j \in D^+ \bigcup D^0} \lambda_{ji}(E+) p_j^+(t), i \in D^-, \quad (3) \\ & \frac{d}{dt} p_i^+(t) - v_i q_i(E,t) = -\lambda_i(E+) p_j^+(t) + \sum_{j \in D^+ \bigcup D^0; j \neq i} \lambda_{ji}(E+) p_i^+(t), \\ & i \in D^+ \bigcup D^0, \end{aligned}$$

 $\sum_{i \in D^{-} \cup D^{0}} \sum_{i \in D^{+} \cup D^{0}} \sum_{i \in D^{+} \cup D^{0}} \sum_{i \in D^{0}} \sum_{\substack{i \in D^{0} \\ \text{Prof. Postan}}} E_{i \in D^{0} dx=1,$ 

9/11/2007

7

(4)

#### Scheme of production line with unreliable units and storage of final product



W is production rate of line;

V is rate of removal of finite product from warehouse;

**a**<sub>n</sub> rate of failures flow;

 $\boldsymbol{b}_n$  rate of repairs completion flow.

System of differential equations and boundary conditions for determination of stationary distribution for production line with unreliable units  $D = \{0, 1, \dots, N\}, D^{-} = \{1, 2, \dots, N\}, D^{+} = \{0\}, D^{0} = \emptyset,$  $v_i = W - U, i \in D^+; v_0 = -U.$ 

Differential equations:

$$Vq'_{0}(x) = -aq_{0}(x) + \sum_{n=1}^{N} b_{n}q_{n}(x),$$
  
-Uq'\_{1}(x) = -b\_{i}q\_{i}(x) + a\_{i}q\_{0}(x), 0 < x < E, i \in D.

Boundary conditions:

$$Vq_{0}(0) = \sum_{n=1}^{N} b_{n} p_{n}^{-},$$
  

$$Uq_{i}(0) = b_{i} p_{i}^{-}, i \in D^{-},$$
  

$$Uq_{i}(E) = a_{i} p_{0}^{+}, i \in D^{-},$$
  

$$Vq_{0}(E) = ap_{0}^{+}.$$

Condition of normalization:

$$p_{0}^{+} + \sum_{n=1}^{N} p_{n}^{-} + \int_{0}^{E} \sum_{n=1}^{N} q_{n}(x) dx = 1.$$
  
Here  $V = W - U > 0; a = a_{1} + a_{2} + ... + a_{N};$   
Prof. Postan

9/11/2007

9

#### Scheme of interaction of transport units at point of transshipment Point of transshipment



 $W_1$  is processing rate of unloading of TU;  $W_2$  is processing rate of loading of TU;  $T_1$ ,  $T_2$  are the race durations for both TU.

#### System of differential equations and boundary conditions for determination of stationary distribution of interaction of two transport units via warehouse

D ={(0,0), (1,0),(0,1),(1,1)}, D<sup>-</sup>={(0,1)}, D<sup>+</sup>={(1,0),(1,1)}, D<sup>0</sup>={(0,0)}  $v_{10} = W_1, v_{11} = W_1 - W_2 > 0, v_{01} = -W_2, v_{00} = 0$ 

System of differential equations:

$$\begin{split} 0 &= -(a_1 + a_2)q_{00}(x) + b_1q_{10}(x) + b_2q_{01}(x), \\ W_1q_{10}'(x) &= -(a_2 + b_1)q_{10}(x) + b_2q_{11}(x) + a_1q_{00}(x), \\ -W_2q_{01}'(x) &= -(a_1 + b_2)q_{01}(x) + b_1q_{11}(x) + a_2q_{00}(x), \\ Vq_{11}'(x) &= -(b_1 + b_2)q_{11}(x) + a_1q_{01}(x) + a_2q_{10}(x), \quad 0 < x < E. \end{split}$$

Boundary conditions:

$$\begin{split} & W_2 q_{01}(0) = a_1 p_{01}^-, \quad V q_{11}(0) = a_1 p_{01}^-, q_{10}(0) = 0, \\ & W_2 q_{01}(E) = b_3 p_{11}^+, \quad -W_1 q_{10}(E) = -a_2 p_{10}^+ + p_{11}^+, \\ & -V q_{11}(E) = -(b_2 + b_3) p_{11}^+ + a_2 p_{10}^+. \end{split}$$

Condition of normalization:

$$p_{01}^{-} + p_{10}^{+} + p_{11}^{+} + \int_{0}^{E} [q_{00}(x) + q_{01}(x) + q_{10}(x) + q_{11}(x)]dx = 1.$$

Here:  $V=W_1-W_2$ ,  $b_1=W_1/g_1$ ,  $b_2=W_2/g_2$ ,  $b_3=W_2/g_1$ . Main indices of interaction efficiency :

a)probability of transport units demurrage because of absence of another transport unit ( $p_{10}^+$ ) b)mean amount of cargo at warehouse

$$E\xi = \int_{0}^{E} x[q_{00}(x) + q_{01}(x) + q_{10}(x) + q_{11}(x)]dx + E(p_{10}^{+} + p_{11}^{+}).$$

## Scheme Of logistical system of liquid product distribution among points of transshipments



## Optimal distribution of cargo-flows among a set of transshipment points

**Objective function**: total mean current profit of all organizationsmediators

$$\overline{P} = \sum_{n=1}^{N} (\pi_n W_n - c_n^{st} \mathbf{E} \xi_n) \to \max,$$

(1) where  $\pi_n = \Pi_n - p_n - c_n$ ;  $\Pi_n$  is the price for 1 *t* of product for customer at *n*-th PT;  $p_n$  is the price for 1 *t* of product for *n*-th mediator;  $c_n$  are transportation costs for delivery of 1 *t* of product to *n*-th PT;  $c_n^{st}$  are storage expences per time unit for 1 *t* of product at *n*-th PT;  $W_n$  is rate of product's coming at *n*-th PT from enterprise (control parameter);  $E\xi_n$  is mean amount of product at warehouse at *n*-th PT. **Constraint:** 

 $\sum_{n=1}^{N} W_n \le W_0, \tag{2}$ 

where  $W_0$  is production capacity of enterprise.

Solution of optimization problem (1), (2) for the case  $E=\infty$ , R=0,

$$E\xi_n = \frac{b_n W_n^2}{a_n [a_n U_n - (a_n + b_n) W_n]}, \quad a_n U_n > (a_n + b_n) W_n:$$
  
the optimal values of  $\{W_n, n=1,2,...,N\}$  are given by formulas

$$W_{n} = \frac{a_{n}U_{n}}{a_{n} + b_{n}} [1 - \sqrt{\frac{b_{n}c_{n}^{st}}{a_{n}(a_{n} + b_{n})(\pi_{n} + \varphi) + b_{n}c_{n}^{st}}}], n = 1, 2, \dots, N,$$

\_\_\_\_\_

where  $\phi$  is Lagrange multiplier which satisfies the equation

$$\sum_{n=1}^{N} \frac{a_n U_n}{a_n + b_n} \sqrt{\frac{b_n c_n^{st}}{b_n c_n^{st} + a_n (a_n + b_n)(\pi_n + \varphi)}} = \sum_{n=1}^{N} \frac{a_n U_n}{a_n + b_n} - W_0 > 0.$$

# Thank you for your attention

Prof. Dr. Mykhaylo Postan postan@ukr.net